已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).(1)试说明:EA=EC;(2)求直线BO’的解析式;(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m (m>0)。y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.
如图,已知∠1+∠2=180º,∠DAE=∠BCF. (1)试判断直线AE与CF有怎样的位置关系?并说明理由; (2)若∠BCF=70º,求∠ADF的度数.
如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的高CD和中线AE.(3)△ABC的面积为 .
(本题5分)化简求值:,其中,
(每小题3分,共9分)因式分解:(1)x3+2x2y+xy2 (2) (3)
如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连接DE并延长交射线AB于点F,连接BE.(1)求证:∠AFD=∠EBC ;(2)是否存在这样一个菱形,当DE=EC时,刚好BE⊥AF?若存在,求出∠DAB的度数,若不存在,请说明理由 ;(3)若∠DAB=90°,且当△BEF为等腰三角形时,求∠EFB的度数.