已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).(1)试说明:EA=EC;(2)求直线BO’的解析式;(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m (m>0)。y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.
在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点 B 垂直起飞到达点 A 处,测得1号楼顶部 E 的俯角为 67 ° ,测得2号楼顶部 F 的俯角为 40 ° ,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且 EC 和 FD 分别垂直地面于点 C 和 D ,点 B 为 CD 的中点,求2号楼的高度.(结果精确到 0 . 1 )
(参考数据 sin 40 ° ≈ 0 . 64 , cos 40 ° ≈ 0 . 77 , tan 40 ° ≈ 0 . 84 , sin 67 ° ≈ 0 . 92 , cos 67 ° ≈ 0 . 39 , tan 67 ° ≈ 2 . 36 )
如图,在 ΔABC 中, AB = AC ,点 D 、 E 分别是线段 BC 、 AD 的中点,过点 A 作 BC 的平行线交 BE 的延长线于点 F ,连接 CF .
(1)求证: ΔBDE ≅ ΔFAE ;
(2)求证:四边形 ADCF 为矩形.
先化简, ( x 2 + 4 x + 4 x 2 - 4 - x - 2 ) ÷ x + 2 x - 2 ,然后从 - 2 ⩽ x ⩽ 2 范围内选取一个合适的整数作为 x 的值代入求值.
计算: 8 - 2 sin 30 ° - | 1 - 2 | + ( 1 2 ) - 2 - ( π - 2020 ) 0 .
已知 O 为直线 MN 上一点, OP ⊥ MN ,在等腰 Rt Δ ABO 中, ∠ BAO = 90 ° , AC / / OP 交 OM 于 C , D 为 OB 的中点, DE ⊥ DC 交 MN 于 E .
(1)如图1,若点 B 在 OP 上,则
① AC OE (填“ < ”,“ = ”或“ > ” ) ;
②线段 CA 、 CO 、 CD 满足的等量关系式是 ;
(2)将图1中的等腰 Rt Δ ABO 绕 O 点顺时针旋转 α ( 0 ° < α < 45 ° ) ,如图2,那么(1)中的结论②是否成立?请说明理由;
(3)将图1中的等腰 Rt Δ ABO 绕 O 点顺时针旋转 α ( 45 ° < α < 90 ° ) ,请你在图3中画出图形,并直接写出线段 CA 、 CO 、 CD 满足的等量关系式 .