某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;(2)假设这种篮球每月的销售利润为W元,试写出W与x之间的函数关系式,当销售单价定为多少元时每月销售这种篮球的利润最大,最大利润为多少元?
如图,在△ACD中,B为AC上一点,且,,,求AB的长.
关于x的一元二次方程有两个不相等的实数根. (1)求的取值范围; (2)若为符合条件的最小整数,求此时方程的根.
已知:二次函数的图象经过原点,对称轴是直线=-2,最高点的纵坐标为4, 求:该二次函数解析式。
计算:
如图1,在直角梯形ABCD中,AD//BC,∠A=90°,AB=8cm,AD=6cm, BC=10cm。点P从点B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF从CD出发沿DA方向匀速运动,速度为1 cm/s,且EF与BD交于点Q,连接PE、PF。当点P与点Q相遇时,所有运动停止。若设运动时间为t(s). (1)求CD的长度 (2)当PE//AB时,求t的值; (3)①设△PEF的面积为S,求S关于t的函数关系式; ②如图2,当△PEF的外接圆圆心O恰好在EF中点时,则t的值为(请直接写出答案)