如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2. (1)在图中画出四边形AB′C′D′; (2)填空:△AC′D′是 三角形.
小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).图1 请回答:图1中∠APB的度数等于 ,图2中∠PP′C的度数等于 .参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC. 当C(x,y)在第一象限内时,求y与x之间的函数表达式.
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.
在平面直角坐标系xOy中,抛物线y=-x2+bx+c经过点(-3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.
如图,在锐角△ABC中,AB=AC,BC=10,sinA=.(1)求tanB的值;(2)求AB的长.
如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为(2,3).(1)分别求反比例函数和一次函数的表达式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,请直接写出点P的坐标.