若是各项均不为零的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前项和.(Ⅰ)求和;(Ⅱ)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
已知向量,,函数.(1)求函数的最小正周期与值域;(2)已知,,分别为内角, ,的对边,其中为锐角,,,且,求,和的面积.
(本小题满分7分)选修4—5:不等式选讲已知函数.(Ⅰ)求函数的值域;(Ⅱ)设,试比较与的大小.
(本小题满分7分)《选修4-4:坐标系与参数方程》已知曲线(为参数),(为参数).(Ⅰ)化的方程为普通方程;(Ⅱ)若上的点对应的参数为为上的动点,求中点到直线(为参数)距离的最小值.
(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换.(Ⅰ)求复合变换的坐标变换公式;(Ⅱ)求圆C:x2+ y2 =1在复合变换的作用下所得曲线的方程.
(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.