如图,点B和点C分别为∠MAN两边上的点,AB=AC.(1)按下列语句画出图形:(要求不写作法,保留作图痕迹)① AD⊥BC,垂足为D;② ∠BCN的平分线CE与AD的延长线交于点E;③ 连结BE.(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形: ≌ , ≌ ;并选择其中的一对全等三角形予以证明.
如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
先化简,再求值: ÷﹣1.其中a=2sin60°﹣tan45°,b=1.
如图,在平面直角坐标中,过点A(4,0)的抛物线与直线 交于另一点B.过抛物线的顶点E作EF⊥x轴于F点,点M(,)为抛物线在x轴上方的动点.(1)填空:b= ;(2)连结ME.当∠MEF=30°时,请求出的值;(3)当时,过点M作MC⊥x轴于C点,交AB于点N,连接ON.点Q为线段BN上一动点,过点Q作QR∥MN交ON于点R,连接MQ、BR.当∠MQR-∠BRN=45°时,求点R的坐标.
如图,在四边形中,AD∥BC,∠ABC=90°.点E为边AD上一点,将△ABE沿直线BE折叠,使A点落在四边形对角线BD上的P点处,EP的延长线交直线BC于点F.设,,.(1)若∠ABE=30°,AE=3.请写出BE的长度;(2)求证:△ABP∽△BFE;(3)当四边形EFCD为平行四边形时.试求出、、的数量之间的关系式.
已知点,和直线(由变形而得),则点P到直线的距离可用公式计算.例如:求点,到直线的距离.解:由直线可得,k=1,b=1.则点P到直线的距离为.根据以上材料,解决下列问题:(1)请求出点P(1,1)到直线的距离;(2)已知互相平行的直线与之间的距离是,试求的值.