已知数列{an}满足a1=1,a2=3,且, . (1)证明:数列{a2k}()为等比数列; (2)求数列{an}的通项公式; (3)设 (λ为非零整数).试确定λ的值,使得对任意都有成立.
在△ABC中,内角A,B,C的对边分别为a,b,c,且满足 (a-c)cosB=bcosC. (1)求角B的大小;(2)若b=,求△ABC面积的最大值.
已知函数.(I)求函数的单调区间;(Ⅱ)若,试解答下列两小题.(i)若不等式对任意的恒成立,求实数的取值范围;(ii)若是两个不相等的正数,且以,求证:.
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.(Ⅰ)求椭圆C的方程;(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
已知数列的通项公式为,数列的前项和为,且满足.(1)求的通项公式;(2)在中是否存在使得是中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.
如图所示,机器人海宝按照以下程序运行1从A出发到达点B或C或D,到达点B、C、D之一就停止;②每次只向右或向下按路线运行;③在每个路口向下的概率;④到达P时只向下,到达Q点只向右.(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.