已知数列{an}满足a1=1,a2=3,且, . (1)证明:数列{a2k}()为等比数列; (2)求数列{an}的通项公式; (3)设 (λ为非零整数).试确定λ的值,使得对任意都有成立.
已知椭圆G:.过点(m,0),作圆的切线,交椭圆G于A,B两点. (I)求椭圆G的焦点坐标和离心率;(II)将表示为m的函数,并求的最大值.
如图,四棱锥中,⊥平面,是矩形,, 直线与底面所成的角等于30°,, . (1)若∥平面,求的值; (2)当等于何值时,二面角的大小为45°?
在中,角所对的边为,已知。 (1)求的值; (2)若的面积为,且,求的值。
在数列{}中,,并且对任意都有成立,令. (Ⅰ)求数列{}的通项公式;(Ⅱ)求数列{}的前n项和
(1)若,不等式恒成立,求实数的取值范围; (2)若,满足不等式,求实数的取值范围.