在△ABC中,内角A,B,C的对边分别为a,b,c,且满足 (a-c)cosB=bcosC. (1)求角B的大小;(2)若b=,求△ABC面积的最大值.
已知:A(-8,-6),B(-3,-1)和C(5,7),求证:A,B,C三点共线.
把函数在及之间的一段图象近似地看作直线,设,证明:的近似值是:.
过点作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
已知直线,(1)系数为什么值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;(3)系数满足什么条件时只与x轴相交;(4)系数满足什么条件时是x轴;(5)设为直线上一点,证明:这条直线的方程可以写成.
已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.