(本小题满分13分)已知数列是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)若数列是首项为2,公比为2的等比数列,求数列的前项和.
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.
已知函数,(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.
已知函数.(1)当时,求的解集;(2)当时,恒成立,求实数的集合.
在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
如图,圆的直径,是延长线上一点,,割线交圆于点,,过点作的垂线,交直线于点,交直线于点.(1)求证:;(2)求的值.