(请考生在题22,23,24中任选一题作答,如果多做,则按所做的第一题计分。)(本小题满分10分)如图5,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点。(1)求证:~;(2)若⊙O1和⊙O2的半径之比为9:16,求的值。
设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和;(2)求证:;(3)设,,求证:.
当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i(1)为纯虚数;(2)为实数;(3)对应的点在复平面内的第二象限内.
已知关于的方程=1,其中为实数.(1)若=1-是该方程的根,求的值.(2)当>且>0时,证明该方程没有实数根.
用数学归纳法证明:
已知下列方程(1),(2),(3) 中至少有一个方程有实根,求实数的取值范围.