当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i(1)为纯虚数;(2)为实数;(3)对应的点在复平面内的第二象限内.
已知公差不为0的等差数列 { a n } 的首项 a 1 为 a ( a ∈ R ),且 1 a 1 , 1 a 2 , 1 a 4 成等比数列
(Ⅰ)求数列 { a n } 的通项公式
(Ⅱ)对 n ∈ N + ,试比较 1 a 2 + 1 a 2 2 + . . . + 1 a 2 n 与 1 a 1 的大小.
已知函数 f ( x ) = A sin ( π 3 x + φ ) , x ∈ R , A > 0 , 0 < φ < π 2 . y = f ( x ) 的部分图像,如图所示, P , Q 分别为该图像的最高点和最低点,点 P 的坐标为 ( 1 , A ) . (Ⅰ)求 f ( x ) 的最小正周期及 φ 的值;
(Ⅱ)若点 R 的坐标为 ( 1 , 0 ) , ∠ P R Q = 2 π 3 , 求 A 的值 .
已知数列 a n 与 b n 满足: b n a n + a n + 1 + b n + 1 a n + 2 , b n = 3 + - 1 n 2 , n ∈ N + , 且 a 1 = 2 , a 2 = 4 . (Ⅰ)求 a 3 , a 4 , a 5 的值; (Ⅱ)设 c n = a 2 n - 1 + a 2 n + 1 , n ∈ N + ,证明: c n 是等比数列; (Ⅲ)设 S k = a 2 + a 4 + … + a 2 k , k ∈ N + ,证明: ∑ K = 1 4 n S k a k < 7 6 n ∈ N + .
已知 a > 0 ,函数 f x = ln x - a x 2 , x > 0 .( f x 的图像连续不断)
(Ⅰ)求 f x 的单调区间;
(Ⅱ)当 a = 1 8 时,证明:存在 x 0 ∈ 2 , + ∞ ,使 f x 0 = f 3 2 ;
(Ⅲ)若存在均属于区间 1 , 3 的 α , β ,且 β - α ≥ 1 ,使 f α = f β ,证明 ln 3 - ln 2 5 ≤ a ≤ ln 2 3 .
在平面直角坐标系 x O y 中,点 P ( a , b ) ( a > b > 0 ) 为动点, F 1 , F 2 分别为椭圆 x 2 a 2 + y 2 b 2 = 1 的左右焦点.已知△ F 1 P F 2 为等腰三角形. (Ⅰ)求椭圆的离心率 e ; (Ⅱ)设直线 P F 2 与椭圆相交于 A , B 两点, M 是直线 P F 2 上的点,满足 A M → · B M → = - 2 ,求点 M 的轨迹方程.