(本小题满分10分)在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值.
(本小题14分).已知椭圆离心率,焦点到椭圆上 的点的最短距离为。 (1)求椭圆的标准方程。 (2)设直线与椭圆交与M,N两点,当时,求直线的方程。
(本小题12分)类比平面直角三角形的勾股定理,试给出空间中四面体性质的猜想,并证明。
(本小题12分)设函数在x=1和x= –1处有极值,且,求a,b,c的值,并求出相应的极值。
(本小题12分)一座抛物线形的拱桥的跨度为米,拱顶离水平面米,水面上有一竹排上放有宽10米、高6米的木箱,问其能否安全通过拱桥?
(本小题12分)在对人们休闲的一次调查中,共调查了124人,其中女性70人 男性54人.女性中有43人主要的休闲方式是看电视,另外27人的休闲方式是运动;男性 中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动. (1) 根据以上数据建立一个2×2的列联表; (2)检验性别是否与休闲方式有关,可靠性有多大? 参考临界值如下