(本小题满分12分)已知定点C(-1,0)及椭圆,过点C的动直线与椭圆相交于A,B两点。(1)若线段AB中点的横坐标是,求直线AB的方程;(2)在轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
(本小题满分10分)选修4-1:几何证明选讲. 如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G. ⑴证明:圆心O在直线AD上; ⑵证明:点C是线段GD的中点.
设函数(Ⅰ) 当时,求函数的极值; (Ⅱ)当时,讨论函数的单调性.(Ⅲ)(理科)若对任意及任意,恒有成立,求实数的取值范围.
已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切. (Ⅰ)已知椭圆的离心率; (Ⅱ)若的最大值为49,求椭圆C的方程.
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)求二面角的余弦值.
盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只; (3)取到的2只中至少有一只正品.