(本小题满分12分)已知定点C(-1,0)及椭圆,过点C的动直线与椭圆相交于A,B两点。(1)若线段AB中点的横坐标是,求直线AB的方程;(2)在轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由。
已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点. (1)求证:△OAB的面积为定值; (2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
已知过点A(0,1),且方向向量为,相交于M、N两点. (1)求实数的取值范围; (2)求证:; (3)若O为坐标原点,且.
已知点的坐标分别是,,直线相交于点M,且它们的斜率之积为. (1)求点M轨迹的方程; (2)若过点的直线与(1)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围(为坐标原点).
设,集合,; 若,求的值。