已知等比数列的首项,前n项和为,满足、2、成等差数列;(Ⅰ)求的通项公式;(Ⅱ)设),数列的前n项和为Tn ,求证:.
(本小题满分12分)已知椭圆的中心在坐标原点,左顶点,离心率,为右焦点,过焦点的直线交椭圆于、两点(不同于点).(1)求椭圆的方程;(2)当时,求直线PQ的方程;(3)判断能否成为等边三角形,并说明理由.
(本小题满分13分)设函数.(1)求的最小正周期(2)若函数与的图像关于直线对称,求当时的最大值.
(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)某单位为绿化环境,移栽了甲、乙两种大树各2株。设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响。求移栽的4株大树中:(Ⅰ)至少有1株成活的概率;(Ⅱ)两种大树各成活1株的概率。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)设个不全相等的正数依次围成一个圆圈。(Ⅰ)若,且是公差为的等差数列,而是公比为的等比数列;数列的前项和满足:,求通项;(Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:。