(本小题满分13分)设函数.(1)求的最小正周期(2)若函数与的图像关于直线对称,求当时的最大值.
在中,已知(1)求;(2)若,的面积是,求.
在平面直角坐标系中,已知圆 的圆心为,过点且斜率为的直线与圆相交于不同的两点.(Ⅰ)求的取值范围;(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数,使得直线OD与PQ平行?如果存在,求值;如果不存在,请说明理由.
已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M、N,若OM=ON,求圆C的方程.
已知圆C: 直线(1)证明:不论取何实数,直线与圆C恒相交;(2)求直线被圆C所截得的弦长的最小值及此时直线的方程.
已知圆,(Ⅰ)若直线过定点 (1,0),且与圆相切,求的方程;(Ⅱ) 若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.