经市场调查,某种商品在过去50天的销售和价格均为销售时间t(天)的函数,且销售量近似地满足f (t) =" –" 2t + 200(1 ≤ t ≤ 50 , t ∈ N ),前30天价格为g (t) = t + 30 (1 ≤ t ≤ 30 , t ∈ N ),后20天价格为g (t) =" 45" (31 ≤ t ≤ 50 , t ∈ N ).(1)写出该种商品的日销售S与时间t的函数关系;(2)求日销售S的最大值.
已知集合,若,求实数的取值范围.
利用幂函数图象,画出下列函数的图象(写清步骤). (1).
由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.
下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.
求证:函数在R上为奇函数且为增函数.