经市场调查,某种商品在过去50天的销售和价格均为销售时间t(天)的函数,且销售量近似地满足f (t) =" –" 2t + 200(1 ≤ t ≤ 50 , t ∈ N ),前30天价格为g (t) = t + 30 (1 ≤ t ≤ 30 , t ∈ N ),后20天价格为g (t) =" 45" (31 ≤ t ≤ 50 , t ∈ N ).(1)写出该种商品的日销售S与时间t的函数关系;(2)求日销售S的最大值.
设数列为等差数列,且,,数列的前项和为,且 (1)求数列,的通项公式; (2)若,求数列的前项和.
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点. (1)求证:DC平面ABC; (2)设,求三棱锥A-BFE的体积.
为了了解调研高一年级新学生的智力水平,某校按l 0%的比例对700名高一学生按性别分别进行“智力评分”抽样检查,测得“智力评分”的频数分布表如下表l,表2. 表1:男生“智力评分”频数分布表
表2:女生“智力评分”频数分布表
(1)求高一的男生人数并完成下面男生的频率分布直方图; (2)估计该校学生“智力评分”在[1 65,1 80)之间的概率; (3)从样本中“智力评分”在[180,190)的男生中任选2人,求至少有1人“智力评分”在[185,190)之间的概率.
(本小题满分12分)在中,角所对的边为,且满足 (1)求角的值; (2)若且,求的取值范围.
设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.