已知 O 为坐标原点, F 为椭圆 C : x 2 + y 2 2 = 1 在 y 轴正半轴上的焦点,过 F 且斜率为 - 2 的直线 l 与交 C 于 A , B 两点,点 P 满足 O A ⇀ + O B ⇀ + O P ⇀ = 0 ⇀ .
(Ⅰ)证明:点 P 在 C 上;
(Ⅱ)设点 P 关于点 O 的对称点为 Q ,证明: A , P , B , Q 四点在同一个圆上.
已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量.(Ⅰ)求矩阵A的逆矩阵;(Ⅱ)计算A3的值.
已知矩阵A=(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为,,求矩阵A的逆矩阵A﹣1.
已知矩阵M=,N=,且MN=.(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
已知M=[],α=[],试计算M20α.