(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)某单位为绿化环境,移栽了甲、乙两种大树各2株。设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响。求移栽的4株大树中:(Ⅰ)至少有1株成活的概率;(Ⅱ)两种大树各成活1株的概率。
已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (1)求的值; (2)定义行列式运算,求行列式的值; (3)若函数(),求函数的最大值,并指出取到最大值时的值.
本题满分10分) 设向量=,=(其中实数不同时为零),当时,有;当时,有∥. (1)求函数解析式; (2)设,且,求sin.
本小题满分10分) 如图,有一壁画,最高点A处离地面4m,最低点B处离地面2m,若从离地高1.5m的处观赏它,则 离墙多远时,视角最大?
2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽 的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形 拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的 面积为25,直角三角形中较小的锐角为,那么的值等于.
选修4—4:坐标系与参数方程 已知曲线C1的极坐标方程为,曲线C2的极坐标方程为(,曲线C1,C2相交于点A,B。 (1)将曲线C1,C2的极坐标方程化为直角坐标方程; (2)求弦AB的长。