2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么的值等于 .
已知定点、,动点,且满足、、 成等差数列. (1)求点的轨迹的方程; (2)若曲线的方程为,过点的直线与曲线相切, 求直线被曲线截得的线段长的最小值.
设数满足:. (1)求证:数列是等比数列; (2)若,且对任意的正整数,都有,求实数的取值范围.
如图,在四棱锥中,底面是边长为的正方形,侧面 底面,且,、分别为、的中点. (1)求证:平面; (2)求证:面平面; (3)在线段上是否存在点,使得二面角的余弦值为?说明理由.
地为绿化环境,移栽了银杏树棵,梧桐树棵.它们移栽后的成活率分别 为、,每棵树是否存活互不影响,在移栽的棵树中: (1)求银杏树都成活且梧桐树成活棵的概率; (2)求成活的棵树的分布列与期望.
设函数,. (1)若,求的最大值及相应的的取值集合; (2)若是的一个零点,且,求的值和的最小正周期.