(本小题满分12分)已知椭圆的中心在坐标原点,左顶点,离心率,为右焦点,过焦点的直线交椭圆于、两点(不同于点).(1)求椭圆的方程;(2)当时,求直线PQ的方程;(3)判断能否成为等边三角形,并说明理由.
(本小题满分12分) 如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1 (1)证明:MN∥平面PCD; (2)证明:MC⊥BD; (3)求二面角A—PB—D的余弦值。
(本大题12分)设:实数满足,其中,命题实数满足. (Ⅰ)若且为真,求实数的取值范围; (Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本大题12分) 已知集合,求实数a的取值范围。
(10分) 已知函数,. (1)讨论函数的单调区间; (2)设函数在区间内是减函数,求的取值范围.
(10分) 设的内角所对的边长分别为,且,. (1)求边长; (2)若的面积,求的周长.