如图1,在平面直角坐标系中,抛物线()经过点,顶点为.(1)求抛物线的解析式;(2)如图2,先将抛物线向上平移使其顶点在原点,再将其顶点沿直线平移得到抛物线,设抛物线与直线交于、两点,求线段的长.(3)在图1中将抛物线绕点旋转后得到抛物线,直线总经过一个定点,若过定点的直线与抛物线只有一个公共点,求直线的解析式.
去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件. (1)求饮用水和蔬菜各有多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来; (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,﹣k+4). (1)试确定这两个函数的表达式; (2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.
如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点. (1)求证:PN与⊙O相切; (2)如果∠MPC=30°,PE=,求劣弧的长.
某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元. (1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果; (2)某顾客参加一次抽奖,能获得返还现金的概率是多少?
先化简,后求值:,其中是方程的根.