在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a= -1,b= -3;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点M的运动轨迹是一条直线l,请你求出这条直线l的解析式.
如图,平面直角坐标系中O为坐标原点,直线与x轴、y轴分别交于A、B两点,C为OA中点;(1)求直线BC解析式;(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t( ),求y于t的函数关系式;(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.
为培养学生养成良好的“爱读书、读好书、好读书”的习惯,让书籍成为传递文明、传递知识、传递和谐的载体,哈市某中学计划创建中、小型两类班级图书角打造书香校园,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,共需购书费用860元;组建一个小型图书角需科技类书籍30本,人文类书籍60本,共需购书费用570元,又知每本科技类书籍的价格相同,每本人文类书籍的价格也相同.(1)求每本科技类书籍和每本人文类书籍的价格分别为多少元?(2)若该学校计划用不超过20000元的资金组建中、小型两类图书角共30个,求最多组建多少个中型图书角?
某中学组织全体学生参加了“学雷锋”的活动,六年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:(1)六年级一班有多少名学生?(2)求去敬老院服务的学生人数,并补全直方图的空缺部分;(3)若六年级有800名学生,估计该年级去敬老院的人数.
已知矩形ABCD的周长为12,E、F、G、H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.(参考公式:当x=-时,二次函数y=ax+bx+c(a≠o)有最小(大)值)
如图,在⊙O中,CD为⊙O的直径, =,点E为OD上任意一点(不与O、D重合).求证:AE=BE.