如图,平面直角坐标系中O为坐标原点,直线与x轴、y轴分别交于A、B两点,C为OA中点;(1)求直线BC解析式;(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t( ),求y于t的函数关系式;(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.
晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米.求路灯的高.
阅读理解题: 定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2+i)+(3-4i)=(2+3)+(1-4)i=5-3i. (1)填空:i3= , i4= . (2)计算:①(1+i)(1-i);②(1+i)2; (3)试一试:请利用以前学习的有关知识将化简成a+bi的形式.
在正方形网格中建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题: (1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1并写出点A的对应点A1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2; (3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C.
小明骑自行车从家去学校,途径装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用画树状图的方法加以说明.
解方程:x2 -x -12=0.