在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a= -1,b= -3;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点M的运动轨迹是一条直线l,请你求出这条直线l的解析式.
如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.⑴求抛物线的函数表达式;⑵求直线BC的函数表达式;⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第⑶问的题意,在图中补出图形,以便作答.
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.⑴如图1,当点D在边BC上时,求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;⑵如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;⑶如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).⑴用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.⑵求今年这种玩具的每件利润y元与x之间的函数关系式.⑶设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=,sinA′=.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.⑴求证:AC=CD⑵若AC=2,AO=,求OD的长度.