(本小题满分12分)如图,在底面为菱形的四棱锥中,,为 的中点,,(1)求证:平面(2)求与面所成角的正弦值
(本小题共10分)三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是边长为2的等边三角形,D为AB边中点,且CC1=2AB.(1)(4′)求证:平面C1CD⊥平面ABC;(2)(6′)求三棱锥D—CBB1的体积.
( 10分) 已知函数(1)(4′) 求 (2)(6′)求的最小值
已知集合,试用列举法表示集合
、已知,(),直线与函数、的图像都相切,且与函数的图像的切点的横坐标为1.(Ⅰ)求直线的方程及的值;(Ⅱ)若(其中是的导函数),求函数的最大值;(Ⅲ)当时,求证:.
已知定点A(-1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由