(本小题满分14分)设A是圆上的任意一点,是过点A与轴垂直的直线,D是直线与轴的交点,点M在直线上,且满足.当点A在圆上运动时,记点M的轨迹为曲线.(1)求曲线的标准方程;(2)设曲线的左右焦点分别为、,经过的直线与曲线交于P、Q两点,若,求直线的方程.
如图所示,在圆锥PO中, PO=,ʘO的直径AB=2, C为弧AB的中点,D为AC的中点. (1)求证:平面POD^平面PAC; (2)求二面角B—PA—C的余弦值.
一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点. (1)求证:MN//平面ACC1A1; (2)求证:MN^平面A1BC.
解答下列问题: (1)求平行于直线3x+4y-2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是的直线方程.
已知函数. (1)求函数的单调区间; (2)若函数满足: ①对任意的,,当时,有成立; ②对恒成立.求实数的取值范围.
某企业为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的设备维修、燃料和动力等消耗的费用(称为设备的低劣化值)会逐年增加,第一年设备低劣化值是4万元,从第二年到第七年,每年设备低劣化值均比上年增加2万元,从第八年开始,每年设备低劣化值比上年增加25%. (1)设第年该生产线设备低劣化值为,求的表达式; (2)若该生产线前年设备低劣化平均值为,当达到或超过12万元时,则当年需要更新生产线,试判断第几年需要更新该生产线,并说明理由.