(本小题满分10分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值.
已知关于x的不等式(其中).(1)当时,求不等式的解集;(2)若不等式有解,求实数的取值范围
在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M 对应的参数= ,与曲线C2交于点D (1)求曲线C1,C2的方程;(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求的值。
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.(1)求证:(2)若AQ=2AP,AB=,BP=2,求QD.
已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)(1)求的解析式;(2)设,求证:当时,且,恒成立;(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。
已知椭圆:()过点,且椭圆的离心率为.(1)求椭圆的方程;(2)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。