(本小题满分16分)已知,求:(1)若在单调递增,求范围;(2)若在上最小值为,求值;(3)若存在,使得成立,求范围.
(本小题满分12分)已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*. (1)求数列{an}的通项公式; (2)设bn=,数列{bn}的前n项和为Tn; ①求T120; ②求证:当n>3时, 2
(本小题满分12分)如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE∶AP=1∶3. (1) 求证:OE∥平面PBC; (2) 求二面角D-PB-C的大小.
(本小题满分12分)已知向量=(sin2x,cos2x),=(cos,sin),函数f(x)=+2a(其中a为实常数)(1)求函数f(x)的最小正周期;(2)求a的值。
(本小题满分12分)某公司购买了一博览会门票10张,其中甲类票4张,乙类票6张,现从这10张票中任取3张奖励一名员工.(1)求该员工得到甲类票2张,乙类票1张的概率;(2)求该员工得到甲类票张数多于乙类票张数的概率,
(本小题共12分)已知数列满足:,,
(1)求证:数列 为等差数列; (2) 求数列的通项公式;
(3)令 ,求证: .