.(本小题满分15分) 某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲回答每个问题的正确率相同,并且答题相互之间没有影响,且连续两次答错的概率为.(1)求选手甲回答一个问题的正确率; (2)求选手甲进入决赛的概率;(3)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.
画出如图所示几何体的三视图.
如图所示,水平放置的正三角形ABC,在它的正上方有光源S.请探究如下问题. (1)应怎样画出它在地面上的投影?它的投影是一个什么样的三角形? (2)若光源S慢慢远离正三角形ABC时,它在地面上的投影有何变化? (3)当光源S趋近于无限远时,正三角形ABC和它在地面上的投影有何关系? (4)你从中能领悟出中心投影与平行投影之间有何关系?
如图,已知几何体的三视图,用斜二测画法画出它的直观图.
(1)当时,等式 是否成立?呢? (2)假设时,等式成立. 能否推得时,等式也成立?时等式成立吗?
已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于两点A、B. (1)若|AB|=,求直线l的方程; (2)求|AB|的最小值.