数列{ a n}满足a 1+2 a 2+22 a 3+…+2n-1 a n=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足 (为常数,且<1).(1)求数列{ a n}的通项公式及的值;(2)设,求数列的前n项的和;(3)证明+++ +>Sn.
已知函数的图象的两条相邻对称轴间的距离等于,在ABC中,角A,B,C所对的边依次为a,b,c,若, b+c=3,,求ABC的面积.
己知长方体的三条棱长分别为a、b、c,其外接球的半径为 (1)求长方体体积的最大值: (2)设,求的最大值
己知抛物线的顶点M到直线(t为参数)的距离为1 (1)求m; (2)若直线与抛物线相交于A,B两点,与y轴交于N点,求的值.
(本小题满分10分)选修4-l:几何证明选讲如图,是ABC的外接圆,D是的中点,BD 交AC于E (1)求证:: (2)若,O到AC的距离为1,求的半径
已知函数(d为常数) (1)当对,求单调区间; (2)若函数在区间(0,1)上无零点,求a的最大值.