数列{ a n}满足a 1+2 a 2+22 a 3+…+2n-1 a n=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足 (为常数,且<1).(1)求数列{ a n}的通项公式及的值;(2)设,求数列的前n项的和;(3)证明+++ +>Sn.
设函数 (1)当时,求的单调区间; (2)若当时,恒成立,求的取值范围.
椭圆的中心在原点,过点,且右焦点与圆的圆心重合. (1)求椭圆的方程; (2)过点的直线交椭圆于M、N两点,问是否存在这样的直线,使得以MN为直径的圆过椭圆的左焦点?若存在,求出直线的方程;若不存在,请说明理由;
设函数. (1)当(为自然对数的底数)时,求的极小值; (2)讨论函数零点的个数.
已知曲线与在第一象限内的交点为P. (1)求过点且与曲线相切的直线方程; (2)求与曲线所围图形的面积.
已知函数处都取得极值. (1)求的值; (2)求的单调区间