(本小题满分14分)已知圆C的圆心在坐标原点O,且与直线相切.(1)求直线被圆C所截得的弦AB的长;(2)若与直线垂直的直线与圆C交于不同的两点P,Q,且以PQ为直径的圆过原点,求直线的纵截距;(3)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式
(本小题满分12分)设函数(). (1)当时,讨论函数的单调性; (2)若对任意及任意,,恒有成立,求实数的取值范围.
(本小题满分12分) 已知函数. (Ⅰ)函数在处的切线方程为,求a、b的值; (Ⅱ)当时,若曲线上存在三条斜率为k的切线,求实数k的取值范围.
(本小题满分12分) 已知函数. (1)若为函数的极值点,求实数的值; (2)若时,方程有实数根,求实数的取值范围.
(本小题满分12分)中,角的对边分别为,已知点在直线上. (1)求角的大小; (2)若为锐角三角形且满足,求实数的最小值。