设 P ( a , b ) ( b ≠ 0 ) 是平面直角坐标系 x O y 中的点, l 是经过原点与点 ( 1 , b ) 的直线,记 Q 是直线 l 与抛物线 x 2 = 2 p y ( p ≠ 0 ) 的异于原点的交点 (1)若 a = 1 , b = 2 , p = 2 ,求点 Q 的坐标; (2)若点 P ( a , b ) ( a b ≠ 0 ) 在椭圆 x 2 4 + y 2 = 1 上, p = 1 2 a b ,求证:点 Q 落在双曲线 4 x 2 - 4 y 2 = 1 上; (3)若动点 P ( a , b ) 满足 a b ≠ 0 , p = 1 2 a b ,若点 Q 始终落在一条关于 x 轴对称的抛物线上,试问动点 P 的轨迹落在哪种二次曲线上,并说明理由.
已知函数(1)若的最大值和最小值;(2)若的值。
已知函数.(1)求的最小正周期;(2)在中,分别是A、B、C的对边,若,,的面积为,求的值.
(1)设,试比较与的大小;(2)是否存在常数,使得对任意大于的自然数都成立?若存在,试求出的值并证明你的结论;若不存在,请说明理由。
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成。(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。试从至少正确完成2题的概率分析比较两位考生的实验操作能力.
在直角坐标系内,直线的参数方程为为参数.以为极轴建立极坐标系,圆的极坐标方程为.判断直线和圆的位置关系.