已知函数f(t)= f ( t ) = 1 - t 1 + t , g ( x ) = c o s x · f ( s i n x ) + s i n x · f ( c o s x ) , x ∈ ( π , 17 π 12 ) .
(Ⅰ)将函数 g ( x ) 化简成 A sin ( ω x + φ ) + B ( A > 0 , ω > 0 , φ ∈ [ 0 , 2 π ] ) 的形式; (Ⅱ)求函数 g ( x ) 的值域。
已知四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,PD="AD." (Ⅰ)求证:BC∥平面PAD;(Ⅱ)若E、F分别为PB,AD的中点,求证:EF⊥BC;(Ⅲ)求二面角C-PA-D的余弦值.
已知A,B,C,D四个城市,它们各自有一个著名的旅游点,依次记为A,b,C,D,把A,B,C,D和A,b,C,D分别写成左、右两列.现在一名旅游爱好者随机用4条线把城市与旅游点全部连接起来, 构成“一一对应”.规定某城市与自身的旅游点相连称为“连对”,否则称为“连错”,连对一条得2分,连错一条得0分. (Ⅰ)求该旅游爱好者得2分的概率. (Ⅱ)求所得分数的分布列和数学期望.
在⊿ABC中,角A,B,C的对边分别为A,b,C,且满足(2A-C)CosB=bCosC.(Ⅰ)求角B的大小;(Ⅱ)已知函数f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。
已知函数,(其中m为常数).(1) 试讨论在区间上的单调性;(2) 令函数.当时,曲线上总存在相异两点、,使得过、点处的切线互相平行,求的取值范围.
如图,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点 关于点对称.(1)若点的坐标为,求的值;(2)若椭圆上存在点,使得,求的取值范围.