已知函数f(t)= f ( t ) = 1 - t 1 + t , g ( x ) = c o s x · f ( s i n x ) + s i n x · f ( c o s x ) , x ∈ ( π , 17 π 12 ) .
(Ⅰ)将函数 g ( x ) 化简成 A sin ( ω x + φ ) + B ( A > 0 , ω > 0 , φ ∈ [ 0 , 2 π ] ) 的形式; (Ⅱ)求函数 g ( x ) 的值域。
已知为实数,函数. (1) 若,求函数在[-,1]上的极大值和极小值; (2)若函数的图象上有与轴平行的切线,求的取值范围.
设函数. (1)求不等式的解集; (2)若不等式的解集是非空的集合,求实数的取值范围.
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?
已知:,, 求证:.
已知不等式2|x-3|+|x-4|<2a. (Ⅰ)若a=1,求不等式的解集; (Ⅱ)若已知不等式的解集不是空集,求a的取值范围.