已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程。
已知点G是△ABC的重心,A(0, -1),B(0, 1),在x轴上有一点M,满足||=||, (∈R).⑴求点C的轨迹方程;⑵若斜率为k的直线l与点C的轨迹交于不同两点P,Q,且满足||=||,试求k的取值范围.
在中,O为中线AM上一个动点,若AM=2,则的最小值是_____.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点, (I)求证:(I)AC⊥BC1; (II)求证:AC 1//平面CDB1;
在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点 (1)求直线A′C与DE所成的角;(2)求直线AD与平面B′EDF所成的角;(3)求面B′EDF与面ABCD所成的角
如图,正三棱柱ABC—A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3 (1)若M为AB中点,求证 BB1∥平面EFM;(2)求证 EF⊥BC;(3)求二面角A1—B1D—C1的大小