附加题) 如图所示,在直三棱柱ABC—A1B1C1中,D是棱CC1的中点。(1)证明:A1D⊥平面AB1C1;(2)求二面角B—AB1—C1的余弦值;
记的展开式中,的系数为,的系数为,其中(1)求(2)是否存在常数p,q(p<q),使,对,恒成立?证明你的结论.
某医院有内科医生5名,外科医生4名,现要派4名医生参加赈灾医疗队,(1)一共有多少种选法?(2)其中某内科医生甲必须参加,某外科医生乙因故不能参加,有几种选法?(3)内科医生和外科医生都要有人参加,有几种选法?
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.请对上面定理加以证明,并说出定理的名称及作用.
已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ.求证:l⊥γ.
如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点、和、,且满足,其中为常数,过点作的平行线交椭圆于、两点.(1)求椭圆的方程;(2)若点,求直线的方程,并证明点平分线段.