某医院有内科医生5名,外科医生4名,现要派4名医生参加赈灾医疗队,(1)一共有多少种选法?(2)其中某内科医生甲必须参加,某外科医生乙因故不能参加,有几种选法?(3)内科医生和外科医生都要有人参加,有几种选法?
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换.(Ⅰ)求复合变换的坐标变换公式;(Ⅱ)求圆在复合变换的作用下所得曲线的方程.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),、分别为直线与轴、轴的交点,线段的中点为.(Ⅰ)求直线的直角坐标方程;(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.(3)(本小题满分7分)选修4—5:不等式选讲已知不等式的解集与关于的不等式的解集相等.(Ⅰ)求实数,的值;(Ⅱ)求函数的最大值,以及取得最大值时的值.
(本小题满分14分)已知函数,.(Ⅰ)求函数的极值;(Ⅱ)判断函数在区间上零点的个数,并给予证明;(Ⅲ)阅读右边的程序框图,请结合试题背景简要描述其算法功能,并求出执行框图所表达的算法后输出的值.
(本小题满分13分)已知点为抛物线: 的焦点,为抛物线上的点,且.(Ⅰ)求抛物线的方程和点的坐标;(Ⅱ)过点引出斜率分别为的两直线,与抛物线的另一交点为,与抛物线的另一交点为,记直线的斜率为.(ⅰ)若,试求的值;(ⅱ)证明:为定值.
(本小题满分13分)如图1,在等腰梯形中,,,,为上一点, ,且.将梯形沿折成直二面角,如图2所示.(Ⅰ)求证:平面平面;(Ⅱ)设点关于点的对称点为,点在所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.
(本小题满分13分)甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.参考公式:.参考数据: