(本小题满分14分)已知函数,.(Ⅰ)求函数的极值;(Ⅱ)判断函数在区间上零点的个数,并给予证明;(Ⅲ)阅读右边的程序框图,请结合试题背景简要描述其算法功能,并求出执行框图所表达的算法后输出的值.
(本小题12分)下表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费用(万元)的几组对照数据:
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?
(本小题12分)已知,且点A和点B都在椭圆内部, (1)请列出有序数组的所有可能结果; (2)记“使得成立的”为事件A,求事件A发生的概率。
(本小题12分)已知抛物线C:过点A (1)求抛物线C 的方程; (2)直线过定点,斜率为,当取何值时,直线与抛物线C只有一个公共点。
(本小题12分)已知命题,,若非是非的充分不必要条件,求的取值范围。
(14分)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (Ⅰ)求椭圆的离心率; (Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程; (Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.