已知 { a n } 是首项为19,公差为-2的等差数列, S n 为 { a n } 的前 n 项和. (Ⅰ)求通项 a n 及 S n ; (Ⅱ)设 { b n - a n } 是首项为1,公比为3的等比数列,求数列 { b n } 的通项公式及其前 n 项和 T n .
【原创题】已知函数的部分图像如图所示,若,且.(1)求函数的单调递增区间;(2)若将的图像向左平移个单位长度,得到函数的图像,求函数在区间上的最大值和最小值.
选修4-5:不等式选讲已知函数.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求a的值.
选修4—4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(1)写出圆的标准方程和直线的参数方程;(2)设直线与圆相交于,两点,求的值.
选修4-1:几何证明选讲如图,圆周角的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点E,AD交BC于点F.(Ⅰ)求证:;(Ⅱ)若D,E,C,F四点共圆,且弧长AC等于弧长BC,求.
己知函数 (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设,若对任意,恒有,求a的取值范围.