已知以 a 1 为首项的数列 a n 满足: (1)当 a 1 = 1 , c = 1 , d = 3 时,求数列 a n 的通项公式; (2)当 0 < a 1 < 1 , c = 1 , d = 3 时,试用 a 1 表示数列 a n 的前 100 项的和 S 100 ; (3)当 0 < a 1 < m ( m 是正整数), c = 1 , d ≥ 3 m 时,求证:数列 a 2 , a 3 m + 2 , a 6 m + 2 , a 9 m + 2 成等比数列当且仅当 d = 3 m .
命题双曲线的离心率,命题在R上是增函数.若“或”为真, “且”为假,求实数的取值范围.
已知函数 (1) 求函数在点处的切线方程; (2) 若函数与在区间上均为增函数, 求的取值范围.
用反证法证明:如果,那么.
已知函数 (Ⅰ)求的值域; (Ⅱ)设,函数.若对任意,总存在,使,求实数的取值范围.
某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且比赛结束.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的. (1)求射手甲在这次射击比赛中命中目标的概率; (2)求射手甲在这次射击比赛中得分的数学期望.