(本小题满分13分)已知数列的前n项和为,(),.(1)当t为何值时,数列是等比数列?(2)设数列的前n项和为, ,点在直线上,在(1)的条件下,若不等式对于恒成立,求实数m的最大值.
如图,在四棱锥中,底面,底面是梯形,其中,,与交于点,是边上的点,且,已知,,. (1)求平面与平面所成锐二面角的正切; (2)已知是上一点,且平面,求的值.
已知等差数列满足、、成等比数列,数列的前项和(其中为正常数). (1)求的前项和; (2)已知,,求
设,其中, 已知满足 (1)求函数的单调递增区间; (2)求不等式的解集.
设函数其中 (1)若=0,求的单调区间 (2)设表示与两个数中的最大值,求证:当0≤x≤1时,||≤.
已知椭圆的左右焦点为,抛物线C:以为焦点且与椭圆相交于点、,点在轴上方,直线与抛物线相切. (1)求抛物线的方程和点、的坐标; (2)设A,B是抛物线C上两动点,如果直线,与轴分别交于点.是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.