已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣,0),且过点D(2,0).(1)求椭圆C的标准方程;(2)若已知点A(1,),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积.(Ⅰ)求C;(Ⅱ)若a+b=2,且c=,求A.
已知,R(Ⅰ)当时,解不等式;(Ⅱ)若恒成立,求k的取值范围.
已知直线(t为参数)经过椭圆(为参数)的左焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|·|FB|的最大值和最小值.
如图所示,AC为的直径,D为的中点,E为BC的中点.(Ⅰ)求证:AB∥DE;(Ⅱ)求证:2AD·CD=AC·BC.
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E. (Ⅰ)求曲线E的方程; (Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.