人教A版选修2-1 第二章圆锥曲线与方程练习卷
下列四个命题中不正确的是( )
A.若动点P与定点A(﹣4,0)、B(4,0)连线PA、PB的斜率之积为定值,则动点P的轨迹为双曲线的一部分
B.设m,n∈R,常数a>0,定义运算“*”:m*n=(m+n)2﹣(m﹣n)2,若x≥0,则动点的轨迹是抛物线的一部分
C.已知两圆A:(x+1)2+y2=1、圆B:(x﹣1)2+y2=25,动圆M与圆A外切、与圆B内切,则动圆的圆心M的轨迹是椭圆
D.已知A(7,0),B(﹣7,0),C(2,﹣12),椭圆过A,B两点且以C为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线
已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为( )
A.(0,) | B.() | C.(0,) | D.(,1) |
若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是( )
A.A>0,且B>0 B.A>0,且B<0
C.A<0,且B>0 D.A<0,且B<0
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线y2=2px上,△ABC的重心与此抛物线的焦点F重合(如图)
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标
(3)求BC所在直线的方程.
已知动圆M过定点F(0,﹣),且与直线y=相切,椭圆N的对称轴为坐标轴,一个焦点为F,点A(1,)在椭圆N上.
(1)求动圆圆心M的轨迹Γ的方程及椭圆N的方程;
(2)若动直线l与轨迹Γ在x=﹣4处的切线平行,且直线l与椭圆N交于B,C两点,试求当△ABC面积取到最大值时直线l的方程.
已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
已知直线l:mx﹣2y+2m=0(m∈R)和椭圆C:(a>b>0),椭圆C的离心率为,连接椭圆的四个顶点形成四边形的面积为2.
(1)求椭圆C的方程;
(2)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(3)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.
已知抛物线C:y=ax2,点P(1,﹣1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.
(1)求抛物线C的焦点坐标;
(2)若点M满足,求点M的轨迹方程.