已知动圆M过定点F(0,﹣),且与直线y=相切,椭圆N的对称轴为坐标轴,一个焦点为F,点A(1,)在椭圆N上.(1)求动圆圆心M的轨迹Γ的方程及椭圆N的方程;(2)若动直线l与轨迹Γ在x=﹣4处的切线平行,且直线l与椭圆N交于B,C两点,试求当△ABC面积取到最大值时直线l的方程.
在公差不为0的等差数列中,成等比数列. (1)已知数列的前10项和为45,求数列的通项公式; (2)若,且数列的前项和为,若,求数列的公差.
已知函数(其中),求: (1)函数的最小正周期; (2)函数的单调区间; (3)函数图象的对称轴和对称中心.
已知.若是的充分不必要条件,求正实数的取值范围.
设函数 (Ⅰ)证明:;(Ⅱ)若,求的取值范围.
在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆的极坐标方程为 (Ⅰ)求的参数方程; (Ⅱ)记点D在上,在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.