已知数列的前项和为,且满足 (是常数且,), . (1)求数列的通项公式; (2)若数列为等比数列,求的通项公式; (3)在(2)的条件下,记,是否存在正整数,使都成立?若存在,求出的值;若不存在,请说明理由.
(满分9分)如图,已知梯形中,,。求梯形的高.
(本题满分14分) 设函数. (Ⅰ)当时,讨论函数的单调性; (Ⅱ)若函数仅在x=0处有极值,试求a的取值范围; (Ⅲ)若对于任何上恒成立,求b的取值范围.
(本题满分14分) 口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求: (1)n的值; (2)X的概率分布与数学期望.
(本题满分14分) 已知为直线,及所围成的面积,为直线,及所围成图形的面积(为常数). (1)若时,求; (2)若,求的最大值.
(本小题满分14分)在二项式中有2m+n=0,如果它的展开式里最大系数项恰是常数项. (1)求它是第几项;(2)求的范围.