已知等差数列的公差为,前项和为,且,,成等比数列。(Ⅰ)求数列的通项公式;(Ⅱ)令=求数列的前项和。
已知对一切恒成立,求实数的取值范围.
已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1). (1)求f(1)、f(4)、f(8)的值; (2)若有f(x)+f(x-2)≤3成立,求x的取值范围.
已知函数. (1)确定的值,使为奇函数; (2)当为奇函数时,求的值域。
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
判断y=1-2x3在上的单调性,并用定义证明.