已知数列 { a n } 的前 n 项和 S n = n 2 + n 2 , n ∈ N + . (1)求数列 { a n } 的通项公式; (2)设 b n = 2 a n + ( - 1 ) n a n ,求数列 { b n } 的前 2 n 项和.
某专卖店计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(10<x1≤15,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(5≤x2<10,x2为整数).该专卖店分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.问:怎么采购才能使总利润最大?并求最大利润.
某市地铁工程正在加快建设,为了缓解市区内一些主要路段交通拥挤的现状,交警大队在一些主要路口设立了交通路况指示牌,如图所示,小明在离指示牌3.2米的点B处测得指示牌顶端D点和底端E点的仰角分别为52°和30°.求路况指示牌DE的高度.(精确到0.01米,参考数据:≈1.732,sin52°≈0.79,cos52°≈0.62, tan52°≈1.28.)
在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数()的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.
计算: