(本题满分14分) 已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足(是坐标原点),,若椭圆的离心率等于. (Ⅰ)求直线AB的方程;(Ⅱ)若三角形ABF2的面积等于4,求椭圆的方程;(Ⅲ)在(Ⅱ)的条件下,椭圆上是否存在点M,使得三角形MAB的面积等于8.
设函数(1)若函数在x=1处与直线相切.①求实数,的值;②求函数在上的最大值.(2)当时,若不等式对所有的都成立,求实数的取值范围.
已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为。(I)求椭圆方程;(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。
在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ)求证:平面;(Ⅱ)求证:;
从某节能灯生产在线随机抽取100件产品进行寿命试验,按连续使用时间(单位:天)共分5组,得到频率分布直方图如图.(I)以分组的中点资料作为平均数据,用样本估计该生产线所生产的节能灯的预期连续使用寿命;(II)为了分析使用寿命差异较大的产品,从使用寿命低于200天和高于350天的产品中用分层抽样的方法共抽取6件,求样品A被抽到的概率。
已知数列为等差数列,且(1)求数列的通项公式;(2)证明….