某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a,b),(a,b→),(a,b),(a⇀,b),(a⇀,b⇀),(a,b),(a,b),(a,b→),
(a⇀,b),(a,b→),(a⇀,b⇀),(a,b),(a,b→),(a⇀,b),(a,b)
其中a,a⇀分别表示甲组研发成功和失败;b,b⇀分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平; (2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.,
如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点. 求证:MN∥平面AA1C1.
如图所示,在四面体ABCD中,E、F分别是线段AD、BC上的点,==,AB=CD=3,EF=,求AB、CD所成角的大小.
如图所示,在正方体ABCD-A1B1C1D1中,E、F分别为CC1、AA1的中点,画出平面BED1F 与平面ABCD的交线.
定线段AB所在的直线与定平面相交,P为直线AB外的一点,且P不在内,若直线AP、BP与分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.
如图所示,正方体ABCD—A1B1C1D1中,E、F分别是AB和AA1的中点. 求证:(1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点.