如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.(1)判断FH与BC的位置关系,并说明理由;(2)判断HG与DG的数量关系,并说明理由.
(本小题满分6分) 给出下列命题:命题1. 点(1,1)是直线y = x与双曲线y = 的一个交点;命题2. 点(2,4)是直线y = 2x与双曲线y = 的一个交点;命题3. 点(3,9)是直线y = 3x与双曲线y = 的一个交点; … … .(1)请观察上面命题,猜想出命题(是正整数);(2)证明你猜想的命题n是正确的.
(本小题满分6分)
如图, 在平面直角坐标系中, 点A(0,8), 点B(6 , 8 ).(1) 只用直尺(没有刻度)和圆规, 求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹, 不必写出作法): 1)点P到A,B两点的距离相等;2)点P到的两边的距离相等. (2) 在(1)作出点P后, 写出点P的坐标.
(本小题满分6分) 常用的确定物体位置的方法有两种. 如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点. 请你用两种不同方法表述点B相对点A的位置.
(本小题满分8分) 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布 直方图(部分未完成):
上海世博会前20天日参观人数的频数分布直方图
上海世博会前20天日参观人数的频数分布表
已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D. (1)求b、c的值并写出抛物线的对称轴;(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.