(本小题满分6分) 常用的确定物体位置的方法有两种. 如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点. 请你用两种不同方法表述点B相对点A的位置.
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.(1)请用画树状图或列表的方法列出所有可能出现的结果;(2)求两次都摸到白球的概率.
操作题:如图,△ABC内接于⊙O,AB=AC,P是⊙O上一点. (1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线; (2)结合图②,说明你这样画的理由.
解下列方程 (1)(x-2)2=3(x-2); (2)(t-2)2+(t+2)2=10.
如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值。(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值. 若不存在,请说明理由.(3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
已知该运动服的进价为每件60元,设售价为x元. 请用含x的式子表示:①销售该运动服每件的利润是 元; ②月销量是 件;(直接写出结果) (2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?