已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.⑴求圆C的方程;⑵设Q为圆C上的一个动点,求的最小值;⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
(本题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,…后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(本题满分12分) 已知(1)的值;(2)的值.
(本小题满分10分) 某校有学生会干部7名,其中男干部有,A,A,A共4人;女干部有B,B,B共3人.从中选出男、女干部各1名,组成一个小组参加某项活动. (Ⅰ)求A被选中的概率; (Ⅱ)求A,B 不全被选中的概率.
(本小题满分10分)已知=1,=.(Ⅰ)若 与的夹角为,求;(Ⅱ)若与垂直,求与的夹角.
(本小题满分14分)已知圆C经过点,圆心落在 轴上(圆心与坐标原点不重合),且与直线 相切.(Ⅰ)求圆C的标准方程;(Ⅱ)求直线Y="X" 被圆C所截得的弦长;(Ⅲ)l2是与l1垂直并且在Y轴上的截距为b的直线,若)l2与圆C有两个不同的交点,求b的取值范围.